句子

句子

Products

当前位置:首页 > 句子 >

六年级数学圆锥体积教学:深度反思与策略优化

面书号 2024-12-30 12:55 14


在遥远的星河彼岸,一颗璀璨的星辰悄然苏醒。它承载着无尽的奥秘与希望,在宇宙的怀抱中缓缓升起,照亮了那片古老而神秘的领域。这是一个关于冒险与探索的故事,让我们一同踏上这段传奇之旅。

1. 总之,通过本节课的实施,我充分体会到:在课堂中,教师可以教给学生知识,教给学生学习方法,却没有办法教给学生空间观念,这就需要我们教师精心组织活动,让学生在看一看、摸一摸、想一想、画一画等活动中使空间观念逐渐得到发展。

2. 教学先认识圆柱的特征,在学生对圆柱进行了充分的研究和认识之后,通过课件演示,圆柱变成圆台,再由圆台变成圆锥,在观察课件演示的过程中,学生已经初步体会了圆锥和圆柱的区别,即圆柱有2个底面,圆锥只有1个底面;圆柱有无数条高,而圆锥只有1条高。在研究圆锥特征的过程中,学生对圆锥的底面、侧面、高的认识借鉴了对圆柱的研究过程,通过观察、操作,不断进行比较、辨析,最后归纳、概括出圆锥的特征,既认识了圆锥的特征,又进一步加深了学生对圆柱特征的认识,收到了事半功倍的效果,因此这样的教学真正实现了教学资源的最优化。

3. 苏霍姆林斯基曾说过:“把学习上取得成功的欢乐带给儿童,在儿童心里激起自豪和自尊,这是教育的第一信条。”因此,在课堂上,我为学生提供了一个个成功的契机,例如:通过小组内的合作,探索,谈谈你的发现,你的收获等等,使学生在汇报中互相补充、互相启发,感受到学习中的成就感。而且我重视对学生的尊重、信任、赏识和肯定,这给学生极大的信心,促使他们永远乐观向上。

4. 课堂提问要把握时机,根据课时内容和教学环境的具体情况,同时分析学生的特点,在适当时候设疑质问。教师可以在新授课开始,巧妙设问,让学生对新知识产生兴趣和求知欲,主动投入到新知识的探究。 适度,如果问题太简单,学生脱口而出,或者本身就是一个无效的设问,学生盲目地用是或非应答,在热闹的表象下,会降低学生的学习兴趣,弱化学习积极性。甚至养成习惯后,会人云亦云,不知所云。如果问题太难,缺乏相应的铺垫,学生百思不得其解,那么会打击学生的学习热情,使学生不敢回答回题,望而却步。因此课堂提问一定要做到难易适度,使每一个层次的学生都能进入问题情境,获取学习体验。适用,学生的学习能力是有差异的,要真正做到面向全体,就应注意问题的层次性。教师应该设计不同水平的问题,分层次引导学生思维能力的提高,把应用性水平的提问和分析水平的提问交给中等和中上水平的学生回答;把综合水平的提问和评价水平的提问交给水平较高的学生回答。这样设问的对象既是面向全体,又能选择不同的回答对象,使各个层次的学生得到思辨的机会。

5. 一节课下来,我静心思考,有以下几点反思:

6. 在教学过程中,通过课件演示可以观察到圆柱是有长方形旋转得到、圆锥是由直角三角形旋转得到的。在课件中体现的是点动成线、线动成面、面动成体的过程,关注点、线、面、体之间的联系,引导学生整体把握知识。在认一认中,重点是让学生知道圆柱、圆锥的底面、侧面、高。

7. 目前,我镇集体备课质量并不高。个人备课时,我们先要自己阅读、理解教材,根据自己的理解和教学风格,在旁边备出适合自己的教案,然后再阅读理解参考书、集体备课或与同轨的老师讨论研究,补充自己漏备或备不准的教学要点。这样,上课用起自己备的教案得心应手,效果比较好。自己对每一节课的知识要点理解深刻,对课堂的生成应付自如,对书上、资料上练习的讲解也就到位。长此以往,教学质量哪有不提高的道理。

8. 有的课使用课件能大大提高课堂教学效益。如教学平面图形的周长和面积,用了课件周长和面积一目了然。有的课使用教具、学具能提高课堂教学效益。如教学圆柱、圆锥的体积。

9. 一节好的课,要有全体学生的积极参与,突出学生的主体作用。

10. 从“整体辨认 → 局部刻画特征”,鼓励学生在以前研究长方体、正方体特征的基础上,研究圆柱和圆锥的特征。同时,对圆柱和圆锥的侧面的认识,使学生对面的认识从平面过渡到曲面,这是认识上的再一次上升。

11. 怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历提出猜测--设计实验--动手操作--得出公式的自主探究学习的过程,我让学生拿出自己的学具等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。

12. 课题研究要立足于解决教学中的实际问题,要按照问题及课题的思路,针对教学实践中普遍存在的问题,集体研究攻关,在不断的解决问题中深化和推进教学研究,让教学研究的成果迅速转化成提高教学质量的现实生产力。

13. 提供活动空间,让学生在人人参与的操作中发展空间观念。

14. 搭建展示舞台,让学生在交流、汇报中获得成功,建立自信。

15. 《课标》指出:“数学课程的设计与实施应重视运用现代信息技术。”本节课,我利用现代信息技术生动、逼真地将平面图形经过旋转,形成立体图形。这样将静态的知识结构变为动态的探索对象,引领学生们直观、高效的经历了知识发生、发展的过程。

16. 在本课的教学中,我首先让学生猜想圆锥的体积可能与它的什么有关系,再来猜想圆锥的体积可能和什么立体图形的体积有关系,通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。

17. 新课伊始,教师能否创设有趣的问题情境,引发学生有意义的心向,对整节课的教学十分重要。因此我根据学生的认知规律,按照中学数学教学大纲的要求,围绕教学内容的重、难点以及数学知识间的内在联系,课前巧妙设计好自学思考题,并力求做到所设计的问题明确具体,浅中见深具有启发性。例如:在引入过三点的圆的新课教学中我创设了这样的问题情境:先在黑板上画出图形,然后提问:问题:①有一个圆镜被打碎,现欲重新配制一个同样大小的圆镜,要不要反把所有的碎片和这块残片都带去②这个实际问题若从数学角度去观察分析,同学们认为可转化为什么问题(让学生探索、讨论)学生甲:重新画一个与原来相等的圆形镜。学生乙:把玻璃残片补成一个圆。③要重新画一个与原来相等的圆,必须知道什么这样图文并茂的数学情境能使学生探索的欲望油然而生,促使他们集中精力,开动脑筋,尝试探寻各种积极的解决方法,创造的灵感和顿悟很可能由此产生。

18. 课中,我大胆放手,最大限度地给学生自主学习的机会。我从学生的数学现实出发,通过同桌互助、小组合作、全班交流等形式,用观察、分析、猜想、探索、归纳等手段,帮助学生动手、动脑做数学,引导他们自主归纳出立体图形的特点。

19. 我镇数学教师写的教学反思,有的不象反思,象教学目标。有的太笼统、太简单,敷衍了事,起不到反思促教的作用。

20. 总之,在本节课中教师创造性地使用教材,使教学内容更有趣味性、丰富性、现实性。同时建立自主学习的课堂机制,加强学法指导,促进了学生全面发展。

21. 有效创设情境,调动学生上课的积极性。如一小老师在尚庄上的《用字母表示数》

22. 教学反思就是研究自己如何教,自己如何学。教中学,学中教。

23. 为了引导学生结合空间想象体会立体图形的形成过程,发展空间观念,课前让学生准备了长方形、半圆形、三角形、梯形的四面小旗,同桌合作完成。课堂上让学生动手快速的旋转小旗的棒子,仔细观察转动后的结果,体会立体图形的形成。

24. 10X10X1=100即每厘米是100毫升。

25. 导语:教学是一门艺术。实施新课程目标要求,以学生的发展为本,设计小学数学 课堂教学,就是要尊重学生、关注学生遵循学生的情感发生和发展的过程, 以学生的认知规律和一般的学习方法为依据,确定教学目标,处理学习材料,选 择教学方法和课堂教学组织形式,调动学生学习积极性,使学生主动学习,学会 合作学习、 探究学习, 从而全面发展学生的个性。

26. 我镇老师平时工作蛮忙的,有时相互之间正常听、评课比较困难,但我认为一些观摩课、示范课、精品课,我们要抓机会听,或到网上搜了看,认真研究课堂结构,教者语言、形态,教学方式,评价手段等等。

27. 在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

28. ,感受“点动成线”,通过学生用笔代替线段在桌面上平移,感受“线动成面”,通过转动竖立的数学书(代替一个长方形的面),感受“面动成体”。

29. 课堂教学中,随着教学内容的展开,师生的思维发展及情感交流的融洽,往往会因为一些偶发事件而产生瞬间灵感,这些"智慧的火花"常常是不由自主、突然而至,若不及时利用课后反思去捕捉,便会因时过境迁而烟消云散,令人遗憾不已。

30. 总之,在教学之前,先让学生制作圆柱和圆锥,使学生在学习新知时不感到陌生,并激起学生自己探究的乐趣,我感到这样处理不但没有增加学生的学习负担,相反通过对教学资源的有效统整和合理优化,实现了教学的优质、高效。鲸教学反思精打细算教学反思惊蛰教学反思

31. 需要指出的是:备课对自己要求要越来越高,要不断的渗透新课程理念。如:要贯彻启发式、讨论式的教学思想,突出学生的主体地位等等。

32. 新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

33. 即使是成功的课堂教学也难免有疏漏失误之处,对它们进行系统的回顾、梳理,并对其作深刻的反思、探究和剖析,使之成为今后再教学上吸取教训,更上一层楼。

34. 在空间与图形这部分知识的教学中,我们天天将“发展学生空间观念”挂在口头,那么,如何在课堂中有效地实施呢?在本节课中,我做了大胆地尝试,引导学生通过动手操作、观察交流等多种方式获得新知,尤其是让学生画圆柱、圆锥的直观图环节,学生兴趣特别高涨,而且教师大胆地放手,让学生在尝试中出现错误,并充分利用学生所呈现的所有资源引导学生进行观察、交流,不断对自己的图进行修正,引导学生在尝试操作中、在交流争辩中逐渐地构建知识框架。回味起来,实际整个过程也是学生的空间观念逐渐发展的一个过程。

35. 作为一名到岗不久的老师,我们的工作之一就是教学,写教学反思能总结教学过程中的很多讲课技巧,那么教学反思应该怎么写才合适呢?

36. 由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

37. 一节好的课,在教学时要层次清楚,步步深入,重点突出。

38. 二、给学生一个“合作交流、自主探究”的空间。

39. 让每个学生都经历“猜想估计---设计实验验证---发现算法”的`自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。

40. 教学开始从学生熟悉的奥运会开幕式的镜头入手,很自然的把点线面体这些知识与生活联系起来,使学生深刻体会数学来自生活,就存在于身边。引入圆柱和圆锥的学习环节,通过出示不同形状的五盏灯,引出小学阶段所认识的所有立体图形——长方体、正方体、圆柱、圆锥、球。圆柱和圆锥区别于长、正方体的特征是圆柱和圆锥的侧面都是曲面,而且底面是圆,在这个环节中,学生整体感知了圆柱、圆锥区别于长、正方体的特征,同时在抽象出圆柱、圆锥透视图的过程中,()学生对圆柱和圆锥的特征也有了初步感知,这样在大的立体图形的背景下引出对圆柱和圆锥的研究,能够帮助学生建立起知识之间的内在联系,在抽象出立体图形并区别它们的过程中,已经从整体上把握了圆柱和圆锥的特征。

41. 推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的'身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出等底、等高这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!

42. 圆柱和圆锥的特征比较直观,学生通过仔细观察就能发现,把发展学生的空间观念摆在首位。为了能更好的达成教学目标,通过观察情境图

43. 为了便于学生理解,课堂上呈现了几个生活中的具体情境,让学生进行观察,激活学生的生活经验,感受到“点、线、面、体”之间的联系。首先设计了一个利用自行车车轮转动体会“点的运动形成线”的活动,即在自行车后轮辐条上系上彩带,观察彩带随车轮转动的情况,发现彩带转动后形成了圆。然后又呈现了三幅情境图,让学生结合这些生活现象体会“点、线、面、体”之间的联系,第一幅图是“很多小的风筝在天空中连成一条线”,引导学生进一步感受“点的运动形成线”;第二幅图是“雨刷运动时的情况”,引导学生感受“线的运动形成面”;第三幅图是“转门”,引导学生感受“面的旋转形成体”。在结合具体情境感受的基础上,又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展学生的空间观念。

44. 现代教育主张“数学源于现实,寓于现实,用于现实”。教学中,我始终把学生置身于一个现实、有趣、有挑战性的生活情境中,从以生活中“旋转的美”到课中“找一找”生活中圆柱、圆锥体的物品和练习题中包装盒的设计,都鼓动学生去观察,去发现生活中的数学问题,激活学生的生活经验,体会数学知识在生活中的广泛应用,丰富了学生对现实空间的认识,逐步形成了学习数学的良好情感与态度。

45. 教学时,准备了必要的操作材料,引导全体学生在观察、操作、想象的'基础上进行交流,发展学生的空间观念。同时还把点、线、面的运动过程制作成多媒体课件,在想象的基础上,让学生进一步观察。另外,对于教材中通过旋转形成的几何体中出现的球和圆台,让学生在“面旋转成体”的过程中增加体验,鼓励学生通过观察、操作和想象认识这两种几何体。课堂上注意把握好教学要求,球只要求学生认识,不要求掌握特征;圆台不出名称,只要学生能连线,知道是由哪个平面图形旋转形成的就可以了

46. 本课教学我秉承新课程理念的宏观浸润和同事的微观指导,立足于学生的主体发展,重视学生的主动参与、合作交流,较好地实现了教学目标。主要得益于以下三个方面:

47. 数学学习的内容应当是现实、有趣、富有挑战性的。本节课中,教师始终把学生置于趣味盎然的情景之中,如:生活中“旋转的美”、“找一找”等活动。这样激发了学生强烈的求知欲,又使学生体会到数学来源于实践,又为实践服务的思想,从而感受数学知识的现实性。

48. 《课程标准》指出:“学生是数学学习的主人”。因此,课堂上教师要充分相信学生,大胆放手,最大限度的给学生自主学习的机会。本课中教师从学生的数学现实出发,通过同桌互助、小组合作、全班交流等形式,用观察、分析、猜想、探索、归纳等手段,帮助学生动手、动脑做数学,引导他们自主归纳出立体图形的特点。同时,注重教学过程中的评价,使学生在探索的过程中得以最大限度地发挥自主性和潜在创造力,促使学生个性发展。

49. 本节课的教学目标是认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥各部分的名称。

50. “面的旋转”主要知识内容是“圆柱和圆锥的认识”,是在学生已经认识了长方形、正方形、平行四边形、三角形、梯形、圆等平面图形和长方体、正方体等立体图形的基础上进行教学的。对于圆柱和圆锥,学生已经能够直观辨认,本节内容主要是帮助学生从三方面进一步加深认识:

51. 茶杯容积是4500毫升(45X10X10)

52. 数学学习的内容应当是现实、有趣、富有挑战性的。本节课中,我始终把学生置于趣味的情境之中,如:生活中“旋转的美”“找一找”等活动,这样激发了学生强烈的求知欲,又使学生体会到数学源于实践,感受到数学知识的现实性。

53. 今天这节课让我感触最深的就是同学们做的小旗,课后我还收集了一些做得好的。由于他们亲自动手操作了,所以对面的旋转形成体体会比较深,这节课的教学效果也很不错。从今天的课上我明白了一个道理:在空间与图形的课堂上,该让学生准备的材料提前让他们准备好,课堂上放手让学生去操作,去体会,引导学生通过观察、想象、操作等活动亲身感受数学,并从中培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学“动”起来、“活”起来,让学生在“做”中学,使数学课堂焕发出生命活力,提高数学课堂教学效率。

54. 应用中建立形与体的联系,培养学生空间观念。

55. 《面的旋转》是北师大版六年级下册第一单元《圆柱与圆锥》的第一课时,这节课的重点是认识圆柱和圆锥的特征,结合具体的情境让学生通过观察,以及动手操作,引导学生体会“点动成线”、“线动成面”、“面动成体”的过程,整体把握“点、线、面、体”之间的联系,发展学生的空间观念,《面的旋转》教学反思。

56. 从观察圆柱、圆锥实物到认识它们画在平面上的“图”。体现的是“点动成线”“线动成面”“面动成体”的过程,关注“点、线、面、体”之间的联系,引导学生整体把握知识。

57. 将教学过程中达到预先设计的教学目的、引起教学共振效应的做法;课堂教学中临时应变得当的措施;某些教学思想方法的渗透与应用的过程;教育学、心理学中一些基本原理使用的感触;教学方法上的改革与创新等等,详细得当地记录下来,供以后教学时参考使用。

58. 当然,由于这部分内容和传统数学教材相比,难度有所增加,这对学生和我都是一次全新的挑战。为了能更好的驾驭教材,课前我反复研究课本和教参,并且查阅了大量的资料。再结合自己的体会形成了这样一份教学思路。教学思路充分调动学生的主观能动性,始终围绕着能由实物的形状想象出几何图形,有几何图形想象出实物的形状,并能描述运动过程中形成的几何体。能应用图形形象的描述问题,利用直观来进行思考。

59. 总之,在课堂教学中,我把促进学生发展落实到具体的学习活动中,让学生在民主、平等、和谐的课堂气氛中,主动参与学习,在体验中发现知识、掌握知识、应用知识,从而形成空间观念,培养学生的合作精神和创新意识。

60. “面的旋转”的主要知识内容是“圆柱和圆锥的认识”,是在学生已经认识了长方形、正方形、平行四边形、三角形、梯形、圆等平面图形和长方体、正方体等立体图形的基础上进行教学的。对于圆柱和圆锥,学生已经能够直观辨认,本节内容主要是帮助学生从三方面进一步加深认识:第一,从“静态”到“动态”,即由平面图形经过旋转形成几何体。这不仅是对几何体形成过程的学习,同时让学生体会面和体的关系也是发展空间观念的重要途径,这就是教材将本课的题目定为“面的旋转”的原因。第二,从“整体辨认”到“局部刻画特征”,鼓励学生在以前研究长方体、正方体特征的基础上,研究圆柱和圆锥的特征。同时,对圆柱和圆锥的侧面的认识,使学生对面的认识从平面过渡到曲面,这是认识上的再一次上升。第三,从观察圆柱、圆锥实物到认识它们画在平面上的“图”。教材首先体现的是“点动成线”“线动成面”“面动成体”的过程,关注“点、线、面、体”之间的联系,引导学生整体把握知识。教材呈现了几个生活中的具体情境,让学生进行观察,激活学生的生活经验,感受“点、线、面、体”之间的联系。

61. “圆柱与圆锥”是小学六年级下学期的学习内容,这一单元包括圆柱的认识、表面积、体积、圆锥的认识、体积几部分内容。在以往的教材中,不曾安排点线面体知识间沟通联系的课。这套新教材把面的旋转与圆柱和圆锥的认识结合起来教学,很好的沟通了点线面体之间的联系,对学习圆柱和圆锥又起到省时省力的效果。很好地帮助学生建立知识之间的内在联系,又培养了学生观察、类比、归纳、概括能力。

62. 三、让学生在学习中体验数学的应用价值

63. 本节课内容主要是帮助学生从以下三方面进行学习:

64. 3厘米见方的石头是27立方厘米,装入200毫升水比100毫升水升高了,127厘米

65. 有效变换教学形式,调动学生上课的兴趣。如:上课恰当的击掌鼓励,既换了评价方式,又活跃了课堂气氛。比如教学时,在黑板上写下1、

66. 创造性地使用了教材,做到了用教材教。教学中,我在深入钻研教材的基础上,尝试根据自己学生的实际,对教材进行剪裁加工,以达到创造性使用教材的目的。如教学点、线、面、体之间的关系时,对教材单一的点动成线、线动成面和面动成体等内容进行了加工,点动成线既有直的,也有曲的;线动成面,线既可以平移也可以旋转;面动成体也是如此。这一内容的丰富使学生对点、线、面、体之间的关系时认识更清晰,更全面。

67. 从“静态 → 动态”,即由平面图形经过旋转形成几何体。这不仅是对几何体形成过程的学习,同时让学生体会面和体的关系也是发展空间观念的重要途径。

68. 人人学有价值的数学,人人都能获得必要的数学,不同人在数学商获得不同的发展,这是新课程标准的基本理念。生活知识数学化,数学知识生活化,我们所学得只是最重要应用于生活实际。为了体现“学有用的数学”这一理念,教学中,我设计了买冰淇淋、奥运火炬、“神五”等与圆锥体积有关的问题,使得数学问题生活化、趣味化。课后,又设置了在边长4分米的正方体木料里笑一个最大圆锥的问题,教室里放置一个最大圆锥的问题,使得课堂知识回归生活,引发学生思考。这样,极大的激发了学生的求知欲望和探索精神,使得数学学习不再枯燥,而变得更精彩。

69. 以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。

70. 学生作业是学习行为的重要组成部分,是学生将所学知识应用于实践的一种形式,是预习和复习的延续。它所涵盖的范围很广,课堂作业、课外作业、章节测验和期末考试等等。同时,它还担负着对教学过程反馈的重要使命。在智力因素相近的情况下,学生学习成绩相差甚远;甚至同样的得分,隐藏在背后的缺陷也大相径庭。在现实教学中,学生作业有时并没有充分发挥作用,甚至可能成为加重学生负担的罪魁祸首,学生作业的有效性问题困扰着教学工作。如果能找到学生作业与学习行为的内在联系,也就找到了解决学生学习差异的原因。

71. 现代教学论认为:学生只有在亲身经历或体验一种学习过程时,其聪明才智才能得以发挥出来。而且操作与思考、想象相结合是学生认识图形,探索图形特征,发展空间观念的重要算途径。因此,在课上,我为学生提供了多次探索、操作的空间。“旋转游戏”使每一个学生快乐地参与其中,使学生从抽象进入直观,又引发了学生深层次的思考、讨论,接下来在小组中通过看、摸、滚、剪、量等探索活动中,又一次享受到了无比的愉悦,思维也渐渐走向深刻,进一步加深了学生对几何形体的认识,形成良好的空间感知。

72. 就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。