Products
面书号 2025-03-02 20:45 8
1. 三、教学目标
2. (三)知识应用,熟悉公式
3. 问题1:同学们都知道,,试问是否与相等?大家可以猜想是不是等于呢?下面我们就一起探讨两角差的余弦公式
4. 新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
5. (二)圆锥曲线定义的应用举例
6. 7多从“贴近教材、贴近学生、贴近实际”角度,选取典型的数_系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种潜力的机会,从而到达提升学生数学综合潜力之目的不脱离基础知识来讲学生的潜力,基础扎实的学生不必须潜力强教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合潜力
7. 四、拓展延伸
8. 2掌握同角三角函数关系式的三种题型。
9. 归纳概括概念的内涵,明确自变量、对应法则、因变量;
10. 内容的展示上:教师紧扣定义,按照一切从实际出发的原则,通过对基本关系的推导,注重了学生对基本概念学习的良好习惯。教师对问题进行了归纳,分为4个题型,减轻了学生学习的负担,符合学生认知层次,体现了一切从学生实际出发的教学原则。同时,教师在教学过程中也很好地展示了因材施教的教学原则,如在教学预设中准备了4个题型,但是在教学过程中,为了让学生能充分地展示学生的思维形成过程与思维的多样性,教师能够依教学实际及时地将第四类问题舍去,教学效果好。
11. 本课时研究的是同角三角函数关系式的.运用、逆用及变形,因此在教学过程中要发展学生的已有认知,发挥知识迁移。
12. 例2已知△abc三个顶点的坐标分别为a(
13. 要注意定义域x∈(-
14. 情景教学法;问题教学法;直观教学法;启发发现法。
15. 在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
16. (
17. 为了更加清晰地把握教学目标,以给课堂中教和学的行为做出准确定向,需要对教学目标中的关键词进行解析,即要解析了解、理解、掌握、经历、体验、探究等的具体含义,其中特别要明确当前内容所反映的数学思想方法的教学目标。
18. 脚踏实地做好落实工作。当日资料,当日消化,加强每一天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。透过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
19. 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
20. 研究性学习培养的是一种创新精神,以及快速解决问题的能力。参加研究性学习小组,也给了我们一次简单的科学研究工作的体验。科学工作所需要的严谨,大胆都在这样活动中有着完整的体现。使我们体会到了科研工作的艰辛,这些将对我们今后的学习与工作产生积极的作用和深远的影响。
21. 利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。
22. 函数f(x)是奇函数.
23. 而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).
24. 深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
25. 本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。
26. 则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
27. 双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。
28. ,求它的三角函数值。
29. 终边相同的角的同名三角函数值;
30. 已知A(
31. 教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、训练卷),并经组长严格把关方可使用注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习用心性不断提高。
32. 四、教学重难点
33. 备课时从实际出发,精心设计每一节课,备课组分工合作,利用群众智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。
34. 结合二次函数的图象,决定一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
35. 且a×b=
36. cos(α+β)=cosαcosβ-sinαsinβ
37. 根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(
38. 小结:今天的学习内容和方法有哪些?你有哪些收获和经验?幂函数的图象和形状就可能发生很大的变化。我们今天主要研究了幂函数在第一象限的性质。
39. 如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——
40. 通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题方程观点是解决这类问题的基本数学思想和方法
41. 设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。
42. 三角函数是一类特殊函数,“三角函数”是“函数”的下位概念,用“概念同化”方式学习,要理解“三要素”的具体内涵,其中核心是“对应法则”;
43. 函数的知识--“理解三角函数定义”到底要理解什么?--三要素;
44. 是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。
45. 问题2:回忆弧度制中1弧度角的几何解释,它是借助于单位圆给出的,能否从中得到启示将上述定义的形式化简,化简的依据是什么?写出最简单的形式。
46. 任教153班与154班两个班,其中153班是 文化 班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。
47. 结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。
48. 例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
49. 重点:
50. 准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改善教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本潜力,着力于培养学生的创新精神,运用数学的意识和潜力,奠定他们终身学习的基础。